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‘ NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2698

THEORETICAL ANALYSIS OF HYDRODYNAMIC IMPACT OF
A PRISMATIC FLOAT HAVING FREEDOM IN TRIM

By Robert W. Miller
SUMMARY

Equations which include freedom in trim are derived for hydrodynamic
impact of a non-chine- immersed, prismatic float forebody hav1ng a V~bottom -
and a transverse step. These equatlons are an extension of previously
published fixed-trim theory, and a method of solution is indicated by
which time histories of vertical, horizontal, and angular dlsplacement

velocity, and acceleration can be obtained.

Comparisons of specific solutions of the equations with corresponding
fixed-trim solutions are presented. The trends and deviations noted are
similar to those exhibited by a like comparlson of experimental data for
free- and fixed-trim 1mpacts. :

i

TNTRODUCTION

Previously published hydrodynamic impact theory (references 1 to 3)
has been based on the concept that the flow about an immersing seaplane
float or hull is a two-dimensional phenomenon occurring in transverse
planes fixed in space and oriented normal to the keel. The total force
on the float is obtained by summing the reactions in the individual flow
planes in contact with the float and applying an aspect-ratio correction
factor to account for the end-flow losses which exist in three-dimensional
flow.,. This theory has made use of the simplifying assumption that the
trim remains fixed throughout the impact. Experimental checks of this
fixed-trim theory for both model and full-scale hulls have been presented
in numerous reports and some evaluation of the empirical factors involved
has been conducted.

The present investigation was initiated in order to obtain a method
for determining the effect of freedom in trim on loads, moments, and
motions during hydrodynamic impacts of a non-chine-immersed, prismatic
float forebody having a V-bottom and a transverse step. As in the pre-
vious theoretical presentations the wing lift was assumed to be equal
to the model weight and the aerodynamic moments were neglected in order
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to simplify the problem, although they might have had an appreciable
stabilizing effect. o :

The present paper is primarily concerned with the derivation of '
equations describing the vertical, longitudinal, and angular motions and
accelerations of the‘previously described float during hydrodynamic
impact. It also presents comparisons of numerical solutions of these )
equations with theoretical fixed-trim loads, moments, and motions under
identical initial conditions, and a comparison is made of experimental
free-trim and fixed-trim data. ‘ :

SYMBOLS
A hydrodynamic aspect ratio’ (téh B/tan T)
a ‘distance between center of gravity and step, parallel to keel
b distance between center of gravity and step, normal to keel
F hydrodynamic force -
Icg moment of inertia about center of gravity (pivot point) ‘.Z
R 1 9.
K constant (—ng(B)) -
1 wetted keel length : =
Mcg ‘ moment about center of gravity - (bow-up moment is'positive)
Mg . moment about step '
me | virtual mass of float R
m., - mass of fluid in a flow plane
s acceleration of center of gravity, parallel to keel
S distance of flow plane forward of step, parallel to keel
-t . time after contact
v velocity ‘ ) | " L e
X horizontal acceleration of;center of gravity
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X horizontal displacement of step from contact point
Y vertical accéleration of center of gravify
Yy | draft at‘step , ‘ | I
A ' acceleration of center of graviti, normal to keel
z _ penetration of float into a flow plane |
B angle of dead rise
7 - flight-path angle <ca’n"l :X>
. X
o] mass density of water
T . trim, radians, except as noted
F(B) dead-rise function
o(A) aspect-ratio correction factor
Subscripts: |
o\ condition at time of water contact
n directién normal to keel
P direction parallel to keel

Where units are not specified any consistent system of units may be
used.

Dots over x, y, 2z, and T indicate differentiation with respect
to time. ‘ ‘

METHOD OF ANALYSIS

Physical concepts.- The physical concepts on which this analysis is
based are discussed in detail in references 1 and 35, in which the solu-
tion is restricted to fixed positive trim. Briefly, the theory discussed
in these references was based on the concept that the primary flow about
an immersing seaplane float or hull occurs in transverse planes which
were considered fixed in space and oriented perpendicular to the keel.
Figure 1 is a sketch of a prismatic float immersing at positive trim.
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A given flow plane is indicated in figure 1(a) at a distance s forward ’

of the step and the penetratioh of the float into this flow plane is -
represented by z. The motion of the fluid in each plane was treated -
as a two-dimensional phenomenon independent of the other flow planes.

The total force on the floatvis obtained by integrating the reactions

of the fluid in the individual flow planes in contact with the float.
This force is reduced by the application of an end-flow (aspect-ratio)
correction to account for the losses which exist in three-dimensional
;low. The effects of buoyancy and viscosity are neglected, since in an
impact they are nogmally'small in comparison with the inertia forces.
A 1ift force equal to the weight of the seaplane is also assumed to act

throughout the impact.

These concepts are followed in the present analysis except for the
modifications necessary to introduce freedom in trim. In order to
introduce freedom in trim, the flow planes are assumed to rotate about
instantaneous centers of rotation at their intersection with the float
keel. Thus, the planes are permitted to maintain their orientation
normal to the keel and at' the same time to have no translation in spacé
along the line of the keel.

_ Equations of motion.- In this analysis both the float being con-
sidered and the forces applied to it are symmetrical about a vertical
plane through the keel so that the float motions can be resolved as a
case of plane motion. The equations of motion for the float (see
fig. 1(a)) can then be written as ' '

F, = -mg? o | (2)

In equations (1) and (2) the quantities S and Z are the com-
ponents of the center—ofhgravity‘acceleration‘which are, respec%ively,
parallel and perpendicular to the keel. These accelerations can be
- expressed in terms of the horizontal and vertical components of the step:
acceleration and the center-of-gravity accelerations relative to the '
step in the following manner: L ‘ ‘

S=XcosT -y sin T - ate ,- bt ' (%)

2y
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and

=y cos T + X sin T + b2 - at - (5)

~ Since the viscous forces of the fluid are considered small enough
to be neglected in this analysis, there is no force on the float in the
direction parallel to the keel and hence Fp' is equal to zero. There- .

fore, from equations'(lj and (4) the following expression can be obtained:

‘

0 = me(f cos T - ¥ sin T - at® - bT) - (6)

This equation can then be solved to obtain an expression for X

[ 13 . L X ]
e Yy sin T arte br
X = + +
cCos T cCOos T cos T

(1

Now consider equation (2), the normal-force equation. The normal .
force on the float is the sum of the forces exerted by the individual
flow planes reduced by an end-flow-loss correction factor. The typical
flow plane illustrated in figure 1(a) is at a distance s forward of
the step and has a width ds parallel to the keel. The float has made
a penetration 2z into the plane. From the analysis of reference 3,
the virtual mass of fluid in this flow plane is : : \

m, = Kz2ds : (8)
| Where
K = Loww(p) )

. In accordance with the assumptions, the reaction of the fluid in
the plane is the time derivative of the momentum so that

dF = i(mwi) = %(Kzzds z) = K(222‘+ 2252)ds N (10)




NACA TN 2698

\

6 .
| *
The normal force acting on the float can now be obtained by inte- o
grating over the wetted length and multiplying by the aspect-ratio cor- ‘*'
rection factor ) o T
a=1 sin 1 5 ' ‘
F, = ¢(4) f dr = Ko(A) fy - (2°% + 222°)ds (11)
‘ 0 ‘ 0 _
where Fp, can be seen to be a function of z, %, and Z. These quan-
tities may be established as follows. |
It can be seen from figuie l(a) that the penetration z of the
float into a given flow plane can be written as a function of the vari-
ables y, s, and T, each of which is a function of time. Thus
v s sin
z =2 . T (12)
cos T cos T
Differentiation of 2z with respect tbvtime gives ’
. : ‘ .
. 8 sin T T sin T 8T , ‘ .
Z = J - + s ) - - 5 P (13)
cos T cos T cos<T coseT : _
and a further differentiation gives
. ¥ ‘§ sin T:"Y? sin T sT ye ; 2y%esin27 2s79sin T '
zZ = - - - -
cos T cos T coseT cos2T‘_ cos T cos3T cos3T
Qy%asin T PAT . '
(14) ‘

2

COSz’T cos™=T
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The derivatives & and § are now expressed in terms of X, ¥,
and 7. In accordance with the assumptions, the velocity & is con-
stant over the wetted length and is simply equal to the negative of the
float tangential velocity Vp; thus, from figure 1(b),

8 = -V = ysin T - X cos T ‘ (15)

The derivative of this expressiOn is

g = %{ Yy gin 7 - X cos T + yT cos T + XT sin T

Introducing equation (7) gives

S=7yrcos T+ xrsin T - T - BT (16)

t

Equations (12), (13), and (14), with & and s replaced by equa-
tions (15) and (16), respectively, are now introduced into equation (11).
Integration is then performed to obtain the normal force in terms of
motions of the step. Substituting the resulting expression for normal
force into equation (2), where Z in this equation is replaced by equa-
tion (5) gives the following equation for motion of the center of gravity
normal to the keel: ‘

Ko(A)

12 sin3T cos5T

yl‘[?(h'sin:ﬂ cos T - sin T cos "r) ~+ +2(16 sin'tt -

i
6 sin®T + 22] + y3[§xh sin®t cos®T) + (kb sin3T cos®7) +

(ke sin3T cos?T) + x7(20 sinkT cos®7) + y7(12 sin T cos3T -

© .20 sin T cos5T:| y2[:2 sin®r cos T(y cos T + X sin T)]}

5 bt sin T . .. at@sin T
e e s o
o , ;

S T COosS T Cos T




8 | : | - NACA TN 2698

In order to solve the third equation of motion, the total moment
exerted by the individual flow planes about the center of gravity must
be determined. To make an approximate correction for end-flow losses
this moment is multiplied by the aspect-ratio factor ¢(A), where the
assumption is made that this over-all correction factor can be applied
to the moment as well as to the normal force. Equation (3) may thus be
written. as : ‘ S ,

:

Mcg = cp(A)f(s' - a)dF = Icg% (18)\

which, with the use of equation (11), becomes

-

y/sin v . .
Meg = Ko(A) fo (z°z + 2zz°)s ds -'aFn - | (19)
.
Proceeding as with the normél—forCe equatibn giveé the folloWiﬁg equation
for angular motion about the center of gravity:

Ko(A)

60 sin®t cos’t

y2 ¥(5 sindt cos T - 2 sin T cos T) + %2(25 sin¥r -

19 sin®r + 62] + yME%(5 siner cdszT) + ?(5a_sin2T cos T -
20a sinkt cos T + 5b sin3T cos2T) +_}2(35a'éin3T - 85a sinT -
10a sin 1) + x7(25 sin®T coser - 35 sinT COéuT) + y1(15 sin T¢cos3T -

35 sin T cos5{2]‘+ y3[§§(20a sin37 COSET)‘—.{(EOab sin’r cong)';
, . : ' S

2

%Q(EOagsinhT cos?T) - x7(100a sindTt cos®t) + yr(kOa sin®T cosdT -

/

100a sinkT cos3T) + 20 sinfr COS#T(& cos T + x sin f)%] -

. ) . 2 "..r‘ o .
ye[épa sin3T cosuT(y cos T+ x sin T):j}'\= Icg™ (20) -
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Equations (7), (17), and (20) are the equations of motion for the
float and involve the three unknowns x, Y, and T. These equations
- can be solved numerically for the time histories of the three variables .
and their derivatives; see appendix A for a step-by-step iteration pro-
cess. ~Involved in the solution of these equations are the dead-rise
function (see equation (9)) and the aspect-ratio correction factor (see
equation (11)), which are discussed in the subsequent section. ‘

Factors F(B) and @(A).- In order to perform the numerical solu-
tions expressions must be obtained for the dead-rise function F(B) and
the aspect-ratio correction factor ¢(A) contained -in the normal-force
and moment equations., ' : '

An expression for the dedd-rise function F(B), which gives the
variation of the effective two-dimensional fluid mass with dead rise,
. was given by Wagner in reference 4 as

F(B) = (—E% - >2

‘which is equivalent to [f(Bi]e of reference 3. ‘
Although this relationship has not been experimentally verified

for impacts of floats having low dead-rise angles, it has been found

to be in substantial agreement with test data obtained with floats
10 :

of 225 to 40° angle of dead rise (see reference 3).

' On the basis of experiments with vibrating plates in water (refer-
ence 5), Pabst derived the following aspect-ratio expression for approxi-
mating the three-dimensional virtual mass from the virtual mass computed
on a two-dimensional basis: '

1
P(A) =1 Ty

where A 1is the aspect ratio of the equivalent vibrating plate. If
this reduction in the virtual mass is assumed to be determined by the
shape of the intersected area in the plane of the water surface, then
" the application of Pabst's data to V-bottom floats results in the
expression

tan T

OW) =1
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Reduction to fixed trim.- The free-trim equations were derived
from the same basic assumptions as the fixed-trim equations; they must,
therefore, be reducible to the fixed-trim equations. This reduction is ¥
accomplished in appendix B by considering the trim %o be a constant o
instead of a variable, so that the terms containing T and T drop .
out. Tt is then demonstrated that equations (17) and (20) reduce to a
form identical with the equations for normal force and step moment in
references 1 and 6, respectively. Equation (7) is also shown to reduce
to a simple fixed-trim relatiomn. :

Comparison of free- and fixed-trim theoretical solutions.- In order
to indicate the effect of freedom in trim both free- and fixed-trim ‘
theoretical solutions were made for a typical hull for three different

A sets of landing conditions. The dimensions and inertia values of the
full-scale float considered are given in table I. The theoretical
initial conditions for the three impact cases treated are listed in
table II. (The experimental values also listed in table II are discussed
in a subsequent section.)

Figure 2 presents time-history comparisons of solutions of the - a
free-trim equations with fixed-trim solutions for the three cases of ’
theoretical initial conditions given in table II. The-quantities , ,
plotted are the vertical and angular displacements, velocities, and L
accelerations. ' -

The free-trim solutions were obtained by the method described in
appendix A and the fixed-trim solutions were obtained by the method of
reference 7. The so-called ¥ curves for fixed trim shown in the plots
were obtained by using equation (3) but with the fixed-trim total moment
from equation (B7) instead of the free-trim moment. These T curves
can be interpreted as a measure of the applied moment since, from equa-

tion (3); ¥ = —& and Icg is the constant value for the free-trim

cg
float.

FXPERIMENTAL RESULTS -

To demonstrate the effects of freedom in trim experimentally, both

- N\

free- and fixed-trim tests of a float model were made in the Langley A
impact basin. The measured motions are compared in this section. '
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No direct comparison between the experimental and theoretical
results can be made because of differences between the float used in
the tests and that assumed in the theory. The float used in the tests
had a pointed step, flared chines, and an afterbody; whereas the theory
applies to a float forebody having a transverse step and an infinitely
wide V-bottom.  Since these float tests represent the only free-trim
impact-basin data now available, however, the results are included
herein for the qualitative comparisons that can be made.

Apparatus and instrumentation.- The Langley impact basin and testing
procedure are described in reference 8. Pertinent dimensions of the
float model used in the experiments are given in table I. This model,

except for the differences outlined previously, is a %--scale model of -
the float considered in the theoretical solutions.

In the free-trim tests the float model was attached to. the dropping
linkage of the launching carriage at two main pivot points; these sup-
ports were on a transverse line which passed through the point corre-
sponding to the center of gravity of the airplane from which the float
was patterned, For the fixed-trim tests a third support point was
located about 20 inches aft of the main supports on the longitudinal
center line of the float. :

For the free-trim tests the model was supported only at the two
main points and was held at fixed trim until just prior to contact by
means of a locking mechanism, After contact the model was free to
rotate 1n pitch about the main supports over a trim range of -6.5°
to 22.5°, Beyond those limits angular displacement of the float was
restrained by two shock struts which were coupled to the float by means
of telescoplng tubes, one 60 inches forward and one 60 inches aft of
the main pivots. The buffer action of the shock struts extended the
trim range about 50 in each direction before a stop was reached.

Two straln-gage accelerometers of the same type of construction
were electrically connected to obtain angular acceleration directly.
‘These accelerometers were located on a longitudinal line passing through
the axis of rotation and at a distance of 6 feet forward and 6 feet aft
of this axis. A control-position transmitter was adapted to the equip~
ment to measure angular displacement, .

A standard NACA three-component accelerometer was used to obtain
the vertical component of acceleration of the float. It had a natural
frequency of 21 cycles per second and a critical damping of 0.8. Other-
wise, the standard instrumentation as described in reference 8 was used.

Comparison of free- and fixed-trim experimental results.- Figure.3
presents the comparison of free-trim and fixed-trim experimental results
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for cases I and II listed in table II. Agaih’vertical and angular

displacements, velocities, and accelerations are compared; the values
shown apply to full-scale conditions. ‘ : o

It can be noted in table IT that the initial vertical velocity of T
the fixed-tiim run of case I was higher than that of the corresponding o
free-trim run. The time histories for the fixed-trim run were there- ,
fore adjusted as follows to give more comparable results in figure 3(a). -
Since the initial flight-path angles of the two runs were not greatly
different and the initial trims were the same, the velocity time history
of the fixed-trim run was scaled by the ratio of the free-trim initial.
velocity to the fixed-trim initial velocity, the acceleration time . _
. history was scaled by the square of this ratio, and the time was scaled’
by the reciprocal of the ratio. No corresponding adjustments were made .

for case II.
DISCUSSION

Initial conditions.- Table II presents the initial conditions for
both the free- and fixed-trim theoretical solutions and also for the

- free- and fixed-trim test‘runs. The test runs were made with a éu-écalé

model but the initial conditions are gi#en in terms of full—scalevvalues.,

The initial conditions for the theoretical solutions of cases I
“and IT were chosen to correspond to the free-trim experimental runs of -
those cases to make the results as comparable as possible. The experi-
mental fixed-trim runs were chosen, from among those available, to
correspond as closely as possible to the respective free-trim runs. “ ' o

The inifial conditions for case III represent a more ?evere impact_
such as might occur in a second or third contact during a landing run o
or in a contact against the flank of an advancing wave. o en ‘;

Case I.- The first set of conditions treated (case I) represents
an impact at moderate initial values of flight-path angle and trim. In
both the theoretical (fig. 2(a)) and the experimental (fig. 3(a)) results,
‘the vertical motions, trim, and angular velocity for the free-trim con-
dition differ only slightly from the corresponding motions in the fixed-.
trim condition. The only angular acceleration or moment of any size is
exhibited by the experimental free-trim run (t‘z 0.15), but this moment ! ,
is associated with the immersion of the flared chines. Thus, for the e
initial conditions of case I no significant difference appears to exist
petween fixed- and free-trim impacts. o \ o CoE
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Case II.- Case II has approximately the same initial flight-path
anglé as case I but has a higher initial trim. The vertical motions
for the free-trim condition are again observed to approximate those
for the fixed-trim condition in both the theoretical (fig. 2(b)) and
experimental (fig. 3(b)) curves. This impact, however, resulted in an
appreciable change of attitude and a moderate noSe—down moment,

The initial trends of the theoretical and experimental angular:
motions are similar. However, the immersion of the flared chines prob-
ably caused large loads on the float forward of the center of rotation
and therefore a large nose-up moment as indicated by the positive peak
of the experimental T curve. These loads would result in large
deviations of the subsequent motions of the test float from those of
the float assumed in the theory.

Case III,- Case III represents a high~flight-path-angle, low-trim
condition such as might occur in an impact on the flank of a wave. The
curves represent the "effective" values referred to the inclined plane
of the water surface as in reference 9 and are analyzed as an extreme
condition of smocth-water impact. '

In this case, the deviations between the fixed-trim and free-trim
results are much greater than those previously described; freedom in
trim in fact reduces appreciably the maximum values of y and ¥. The
large values of negative vertical velocity of the free-trim solution
compared with the fixed-trim solution late in the impact appear to be
consistent with the large values of trim attained. o '

Probably the most serious effect observed for the free-trim solu-
tion is the high trim and large positive value of angular velocity at
the end of the impact. This could result in a stalled condition between
jmpacts or could lead to extreme initial conditions for a subsequent
~ impact. However, these conditions should be somewhat restricted by the
.presence of an afterbody and by aerodynamic moments not taken 1nto
account by the present theory.

No impact-basin data have been obtained for conditions as severe
as those in this case., An indication of the motions to be expected,
however, can be obtained from an impact of a four-engine flying boat,
the data for which have not been published. The initial conditions' for
this impact were substantially the same as those of case IIT and the
resulting motions were also very similar, Of particular interest in
this seaplane impact is the increase in trim from a small.initial value
(about 3°) to about 15° with positive angular velocity at the time of

exit from the water. The acceleration records contained large oscilla-

" tions, due probably to structural vibrations, which rendered them
unsuitable for direct comparison with the theory, however, the peak
values of the faired curves for both ¥ and T agree roughly with the

i
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corresponding values for the free-trim solution of case III. Thus,
although direct comparison is not practicable, this flying-boat impact
indicates that the initial conditions for case III are within the
practical range and that the theoretical results which are obtained

for this case are at least consgistent with flight-experience.

General discussion.- In general, for cases I and II, the. theoreti-
cal free-trim vertical motions approximate the flxed-trlm vertical
motions to about the same degree as was found experimentally. Also,
the trends of the theoretical angular motions are similar to those of
the experimental data except where deviation is to be expected because
of differences in body shape. Thus, for impacts having moderate -initial
conditions the theoretlcal and experimental free-trim results appear
to be 1in agreement.

For the more extreme initial conditions of case III, there is, of
course, more deviation of all variables from the fixed-trim solution.
The deviations which occur are, however, consistent among themselves
and with general experience. Also, the reductions of maximum applied
load and moment which occur are to be expected. ' .

CONCIUDING REMARKS

Equations of motion are derived and presented for free-trim hydro- ;
dynamic impact of a V-bottom, transverse step, prismatic float forebody.
The equations are an extension of previously published fixed-trim hydro-
dynamic impact theory and are chiefly based on the same concepts and
assumptions. A method of solution of the equations is also presented
which gives theée results as time histories of vertlcal horlzontal and
angular dlsplacement velocity, and acceleratlon.

The free-trim equations are shown to be reduciblé to the fixed-
trim case. Moreover, comparisons of specific solutions of the free-
trim equations with fixed-trim solutions for the same initial conditions
and also with some experimental data have shown that the computed
results are reasonable. The free-trim solutions and experimental data
exhibit similar trends and deviations from the fixed-trim case, and
changes of attltude and applled moment are consistent w1th previous
experience.

Although these facts do not completely validate the equations,
they at least indicate that reasonable and consistent results can be
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obtained by their use. Further experimental investigation should
provide a better evaluation of the method.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., February 13, 1952

15
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APPENDIX A o
METHOD OF ’SOLUTIQN s
Before the numerical solution can be performed, equations (17)
and (20) must be transformed into forms better suited to the method of
solution used. Equation (7) is already in the form required for
solution. : : : ' ,
Equation (17) can be rewritten as
 ea .. !
AT + By = C (A1)
and equation (20) as ’
DT + By ="F (a2)
where - : - ' | - N
A Ko(A) ,‘_;_rh(lmL sin3t cos T - sin T cos ) + y3(kb sin3T éosa'r_—)] .
= - ‘ - + ) ) .\ -
12 sin3T co»s5T = ‘ , oo Y
‘b gin T . ‘ k ' o ,
mel —— - a : .
N cos 7 . » . (83)
kp(a)[y3(h sin2r cos?r)] | :
B=Cp()y( SlIlTCOST)+mf (AL) A
12 sin3~r‘cos5T cos T ‘
- .
‘. N
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C = - Koa) {: [:2 16 sintt - 6 sin®T + 2:]

12 sin37 cos’T

| y3[5?(4a sin3r COSQT) + i%(QO‘SinhT coser) + yr(12 gin T cosdr -

20 sin T COS5TE] + y2 |12 sin®r éOShT(& cos T + x sin T)€j}> -

mf<‘31—sf-n—1 " b+2> | (5)
cos T . , . ,
® 3
D = (a) [:%(5 31n3T cos T~ 2 sin T cos T) + .
60 sinkr cos5T

y4(5a sin®T cos T - 20a sinl*T cos T + 5b sin3T coseT) -
y3(20ab sinuT cosefi] - Igg ‘ i - (A6)
E = Ko(a) [:%(5 sin®T COSET) - y3(20a sin37 cos Té] (AT) |

60 s1nhT cos”
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7 Ko(A) yo E2(25 sintT v... 19 sin®T + 6ﬂ + - .

o 60 sin”T cos/T
yh[gé(35a sin3f - 85a sin’T - 10a sin T) + i}(25 sin®r costr -

y3[§%(203231nh7 cos2T) + %7(100a sin’T cos®t) - yr(koa sin®T cosdT - .

100a sinhT cos3T) - 20 sin®T cos&f(& cos T+ x sin T)%] -

yz[éba sin3T COShT(& cos T + X sin Tfﬂ - (A8)

Equations (Al) and (A2) can be solved simultaneously to give

-v- A'F by DC . ’ vy
Yy = — | - (a9)
- AE = DB :
and
i '1: - EC - BF (Alo)
EA - BD
which, together with equation (T), | .
.o &:sin T a;e b?
X = + +
cos T cos T cos T

are the equations to be used in the numerical solution.
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The numerical solution can be performed by extrapolation of the
plots of ¥ and T against time by any desired function to obtain an
approximate value at the end of the next time interval. The other gquan-
tities (X, X, X, ¥, ¥, T, and T) are then computed and the process
iterated. By this method, time-history plots of each of the nine vari--
ables are obtained. The present solutions were made, however, by the .

Kutta % method (reference 10) which is more readily adaptable to the

automatic computing machine used.

~
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APPENDIX B
 REDUCTION TO FIXED-TRIM CASE

One test of the validity of the free-trim equations is their
compatibility with the special, and well-established, case of fixed-
trim impact. If, in equation (17), the trim is considered to remain
constant throughout the impact, all terms containing derivatives of
the trim are eliminated and the equation becomes o :

 Kp(A)

12 sin3-r COS5T

It

. ’ .. 2
lLy3y sin®r _coszT + 12y2sin_21" cosLl'T(y cos T + x sin T):I

-~ Bl)
T Cos 7 ( ).
which reduces to
mey Kp(a)y3y . ch(A)y2(;§r cos T + x sin 'r)2 (Bé)
- - = + : .
cos T 3 sin 71 cos3t - sin T cos T : .
However, .
.o . d_V . .
e n
= = — B
cos T “at | (83) .
and
V, =y cos T + X sin 7 : (B4)

- so that, by introducing equations (2), (B3), and (B4) into equation (B2),

dv. : ' ‘
. : n 2, 2 .
y K(P(A)Y?’ e Ko(a)yV, | L
. F. = + - oo (35)
n .
3 sin T cose_'r sin T cos T ,

‘which corresponds to equatibnv (22),of reference 1.
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Similarly, the right-hand side of equation (20) is-equal to the
moment about the center of gravity as in equation (3) and, if the trim
derivatives are set equal to zero in the left-hand side, the equation
‘becones '

Ko(A)

60 sinltt cosdT

E%yhy sin®t cos®r - 20ay 3y sin3T‘cos27’+

20y3sin®T COSAT(& cos T + x sin 7)2 -

6anesin37>coshT(& cos T + X sin T)%] = Mg | ‘ (B6)

" which reduces to

o Ke@Y  Ke)y3(F cos 7+ % sin 1% | Ke()ay’y
cg = - ol
& 12 SingT.COS3T 3 singT cos T 3 gin 7T COS3T

K@(A)ay2(§ cos T { x sin T)2

®7)

sin T cos T

After equations (B3) and (B4) are substituted into equation (BT), the
" moment becomes o ‘

. ORI xS .2 -
cg = > L + yocos“T(y cos T + x sin T)°| - .

3 sin“T cos3T

av ‘
kp(a)y3 =2 Ko(a)y2v,” . SRR
‘a + | - (B8)

3 sin 7 cog®r sin Tcos T

and, by introducing equation (B5) and equations (9) and (li) of refer-
ence 3, equation (B8) becomes
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» Kpa)  [v : 2
+ aF, = — 2 | T + y3(y + Ky cos 1)} (B9) .
3 sin“T cos’T

cg

where K; is K in reference 3.

From equations (34) and (26) of reference 6 the moment about the
step is : \ : ‘

Mg = M.. + aF

cg n (B10)

Substituting equation (B10) into equation (B9) gives the moment about
the step ' ‘ :

¢

: TR ‘ o ‘
Kp(A) ¥ . B
Mg = ?(4) Y + vy + Ky cos T)2 ; (B11)
3 singT cos3T L '

which is identical with equation (16) of reference 6.

!

Equation (7) can also be reduced in this manner to give
X =3 tan 7 , : (B12)

In the fixed-trim éondition the step motions and center-of-gravity
motions are the same. Equation (B12) is, therefore, equivalent to

s

¥=Y tan 7  (B13)

Equation (Bl3) can readily be deduced from figure 1(c).
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TABLE I R
: : : ‘ _ o 1 s , , ’
PHYSICAL CHARACTERISTICS OF FULL-SCALE HULL AND 5-—SéALE . L
EXPERIMENTAL MODEL
Experimental
Full-scale - model
hull (-l- - scale>
- . . 2 .
Beall, T& o « o o o o 0 o s o s s ... . 633 3.7
Forebody length, from centroid of step, ft . . 19.11 - ' 9.56
Over-all length, £t .+ i-e o o o o o« o o o o =« 35.67 17.83
a (from centroid of step), ft . . . . « . . 2.28 1.14
b (normal to keel), £t o v o v o o o e 6.06 3.03
Weight, 1D o v o o o o o o o o ¢ & o o o o = 14,000 - 1,750
T L R 434,78 | 54.35
Icg, lb—Secz—f‘t « o o ® o & ® o o o s e s o 19,)'1'10 . ‘ 6O'Tr
B, deg e o o ¢ o o s o s & s 0 e o © s o @ . 20 . V 20 ’ . “:‘ .
.
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Undisturbed
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~& ’ _ o x
(b) Velocity components.  (e) Components of center-of-gravity B .

acceleration.

Figure l.- Schematic representation of impact. : e
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